Agro-Waste Valorization into Bio-Plastics: A Systematic Review of Types, Synthesis, and Characteristics
DOI:
https://doi.org/10.64229/fxgtxt52Keywords:
Plastics Pollution, Bioplastics, Waste Valorization, Tensile Strength, Glass Transition TemperatureAbstract
Plastics,in as much as they play relevant roles, are undeniably one of the most prominent pollutions our planet suffers over the past couple of centuries especially due to their poor degradability and poor recycling, as it is obtained that a very huge amount of plastics produced over the past century are still present somewhere here on earth most likely as pollutants rather than in actual use or recycle. This work hence looks into a very much viable substitute to these plastic products which is bio-plastics, their types, unique and varying properties, also especially how they can be easily and economically obtained from a cheap raw material source such as agro-wastes which would otherwise have been deposited as wastes in rivers and other unsuitable places. The study goes on to show the basic monomer builds of the bio-plastic polymers which are obtainable from these wastes, comparing some of their basic properties like; Tensile strength, glass transition temperature et . It also enlightens on the various areas where these bio-plastics have potential tangible applications and also where they are already in use. It also goes on to emphasize especially the improvements that need to be put in place in order to encourage the speedy inclusion of these safer products into our everyday society which can be both enacting of laws to support and also concentration of research and technology into the development of the already existing knowledge and progress in the bio-plastic industry.
References
[1]Kristina D. 2022 “Bio-plastic” Dictionary, merrian-webster, DOI: merrian-webster.com
[2]Rosenboom Jan-Georg, Langer R, Traverso G. 2022 “Bio-plastics for a circular economy” Nat Rev Mater 7, 117-137 DOI: https://doi.org/10.1038/s41578-021-00407-8
[3]Monika M. 2021 ”5 Types of Bio-plastics: Starch, Cellulose, Protein, Organic, Aliphatic Polyesters” https://greenbusinessbureau.com/green-practices/products/5-types-of-bioplastics-starch-cellulose-protein-organic-aliphatic-polyesters/
[4]Biomass plastic. 2019 “5 Important types of bio-plastics and their recipes” www.biomassplastic.com/types-of-bioplastics.
[5]Green Business Bureau. 2018 “5 types of bio-plastics” https://greenbusinessbureau.com/green-practices/products/5-types-of-bioplastics-starch-cellulose-protein-organic-aliphatic-polyesters
[6]UrthPact, 2018 “The basics of Bio-plastics” www.urthpact.com/bioplastics-basics/
[7]Kastrin J, Rajeer B. 2020 “Valorization of Food Processing Wastes and By-products for Bio-plastic Production” DOI: https://doi.org/10.1016/j.scp.2020.100326.
[8]Patel, M. & Goyal, D. 2021 'Bacterial Fermentation in Bio-Plastic Synthesis'.
[9]Carvalho C. F., Ghosh S., Hoffmann T. G., Prudencio E. S., Krebs de Sauza C., Roy S., 2025 'Valuing agro-industrial waste in the development of sustainable food packaging based on the system of a circular bioeconomy: A review' Cleaner Waste Systems. 11, 100275. DOI: https://doi.org/10.1016/j.clwas.2025.100275.
[10]Lee, J., & Park, H., 2019 'Chemical Modification of Lignocellulosics for Bio-Plastics.
[11]FAO., 2020. Agro-Waste Composition and Valorization Pathways.
[12]Babu RP, O’Connor K, Seeram R., 2013 “Current progress on bio-based polymers and their future trends” ProgBiomater 2, 8, DOI: https://doi.org/10.1186/2194-0517-2-8.
[13]Jane J., 2016 “Starch properties, modifications and applications” DOI: https://doi.org/10.1080/10601329508010286.
[14]Singh A. V, Nath L. K, Singh A., 2013 “Pharmaceutical food and non-food applications of modified starches, a critical review”. Elec J EnvAgricult Food Chem 2010;9(7):1214-21.
[15]Ogunrinola T. M, AKpan U, 2018 “Production of cassava starch bio-plastic film reinforced with poly-lactic acid (PLA)” Int J Eng Res Adv Technol; 4(8):56-61 DOI: https://doi.org/10.31695/IJERAT.2018.3308.
[16]Zhang Y, Rempel C, Liu Q, 2014 “Thermoplastic starch processing and characteristics - a review” Crit Rev Food Sci Nutri. 54(10):1353-70 DOI: https://doi.org/10.1080/10408398.2011.636156.
[17]Carvalho A. J. F, 2018 “Starch: major sources, properties and applications of thermoplastic materials in; Monomers, Polymers and composites from Renewable Resources” p. 321-42 DOI: https://doi.org/10.1016/B978-0-08-045316-3.00015-6.
[18]Muller J, Gonzalez-Martinez C, Chiralt A, 2017 “Combination of poly-lactic acid and starch for biodegradable food packaging” Materials Basel ;10(8):1-22 DOI: https://doi.org/10.3390/ma10080952.
[19]Flores-Hernandez C. G, Colin-Cruz A, Velasco-Santos C, Castano V. M, Rivera-Armenta J. L, Almendarez-Camarillo A., 2014 “All green composites from fully renewable bio-polymers: chitosan-starch reinforced with keratin from feathers” Polymers Basel ;6(3):686-705 DOI: https://doi.org/10.3390/polym6030686.
[20]Liu Z., 2015 “Eddible films and coatings from starches. In: Innovations in food packaging” In: Elsevier Ltd.; p. 318-37 DOI: https://doi.org/10.1016/B978-012311632-1/50051-6.
[21]Bertuzzi M. A, Gottifredi J. C, Armada M., 2013 “Mechanical properties of high amylose content corn starch based film, gelatinized at low temperature” Braz J Food Technol; 15(3):219-27 DOI: https://doi.org/10.1590/S1981-67232012005000015.
[22]Mohd Amin AM, MohdSauid S, Ku Hamid KH., 2015 “Polymer-starch blend biodegradable plastics: an overview’ AdvMaterRes; 1113:93-8 DOI: https://doi.org/10.4028/www.scientific.net/AMR.1113.93.
[23]Oliveira A. V, da Silva A. P. M, Barros O. M, Filho M. D. S. M. S, Rosa M. F, HMC A,. 2018 “Nano-composites films from mango kernel or corn starch with starch nano-crystals” Starke; 70(11-12):1800028 DOI: https://doi.org/10.1002/star.201800028.
[24]Adeni D. S, Abd-Aziz S, Bujang K, Hassan M. A, 2016 “Bio-conversion of sago residue into value added products” Afr J Biotechnol; 9(14):2016-21 DOI: https://doi.org/10.5897/AJB10.009.
[25]Chew T. Y, Shim Y. L., 2013 “Management of Sago processing wastes” In: Yeoh BG, Chee KS, Phang SM, Isa Z, Idris A, Mohamed M, editors. Waste management in Malaysia: current status and prospects for bioremediation. Kuala Lumpur, Malaysia: Ministry of Science, Technology and the Environment: 2013 www.semanticscholar.org/paper/Waste-management-in-Malaysia%3A-current-status-and-Yeoh-Chee/1009c499a8c655e4e881c2c249b3a25ba25d0b5e.
[26]Rosli M. I, Nasir A. M, Mu’IMAbdul Nasir A, Takriff M. S, Chern L. P, 2018 “Simulatuin of fluidized bed drier for the drying of sago waste. Energies” 11(9):2383 DOI: https://doi.org/10.3390/en11092383.
[27]SosMohd A. M, Islam M. N, Noor B. M., 2013 “Enzymic extraction of native starch from sago (Metroxlonsagu) waste residue” Starke 2013;53(12):639-43 DOI: https://doi.org/10.1002/1521-379X(200112)53:12<639::AID-STAR639>3.0.CO;2-2.
[28]Cecil J, (2013) “The development of technology for the extraction of sago” In: Kainuma K, Okazaki M, Toyoda Y, Cecil J, editors. Proceedings of the international symposium on sago. Tokyo, Japan: Universal Academy Press Inc; p. 83-92 https:cir.niiac.jp/crid/1570572699785437056.
[29]Yu L, Dean k, Li L, (2016) “Polymer blends and composites from renewable resources” ProgPolymSci; 31(6):576-602 DOI: https://doi.org/10.1016/j.progpolymsci.2016.03.002.
[30]Sin LT, Rahmat AR, Rahman WAWA, 2013 “Polylacticacide: PLA biopolymer technology and applications.” P352.
[31]Nampoothiri MK, Nair Nr, John RP, 2013 “An overview of the recent developments in polylactide (PLA) research” BioresourTechnol; 101(22):8493-501 DOI:https://doi.org/10.1016/j.biortech.2013.05.092.
[32]Farah S, Anderson DG, Langer R, (2016) “Physical and mechanical properties of PLA, and their functions in wide spread applications - a comprehensive review” Adv Drug Deliv Rev; 107:367-92 DOI: https://doi.org/10.1016/j.addr.2016.06.012.
[33]Fraschini C, Plesu R, Sarasua J-r, Prud-‘homme RE, (2015) “Cracking in polylactidespherulites” J PolymSci Part B PolmPhys; 43(22):3308-15 DOI: https://doi.org/10.1002/polb.20616.
[34]Abdel-Rahman MA, Tashiro Y, Sonomoto K, (2013) “Lactic acid production from lingocellulose-derived sugars using lactic acid bacteria: overview and limits” J BiotechnolAdv; 156(4):286-301 DOI: https://doi.org/10.1016/j.jbiotec.2011.06.017.
[35]John RP, Nampoothiri KM, Pandey A, (2016) “Process Biochem: Solid-state fermentation for L-lactic acid production from agro wastes using ‘Lactobacillus delbrueckii’ ” Process Biochem; 41(4):759-63 DOI: https://doi.org/10.1016/j.procbio.2005.09.013.
[36]Panesar PS, Kaur S, (2015) “Bio-utilization of agro-industrial waste for lactic acid production” Int J Food SciTechnol; 50(10):2143-51 DOI: https://doi.org/10.1111/ijfs.12886.
[37]John RP, Anisha GS, Nampoothiri KM, Pandey A, (2019) “Direct lactic acid fermentation: focus on simultaneous saccharificationand lactic acid production” BiotechnolAdv; 27(2):145-52 DOI: https://doi.org/10.1016/j.biotechadv.2018.10.004.
[38]Reddy G, Altaf M, Naveena BJ, Ventkateshwar M, Kumar EV, (2018) “Amylolytic bacterial lactic acid fermentation - a review” BiotechnolAdv; 26(1):22-34 DOI: https://doi.org/10.1016/j.biotechadv.2007.07.004.
[39]Edhirej A, Sapuan SM, Jawaid M, Zahari NI, (2017) “cassava: its polymer, fiber, composite and application"Polym Compos; 38(3):555-70 DOI: https://doi.org/10.1002/pc.23614.
[40]Pandey A, Soccol CR, Nigam P, Soccol VT, (2000) “Bio-technological potential of agro-industrial residues” I: sugarcane bagasse. BioresourTechnol; 74(1):69-80 DOI: https://doi.org/10.1016/S0960-8524(99)00142-X.
[41]Wischral D, Arias JM, Modesto LF, de Franca PD, Prereira N, (2019) “Lactic acid production from sugarcane bagasse hydrolysates by ‘Lactobacillus pentosus: integrating xylose and glucose fermentation” BiotechnolProg; 35(1):e2718 DOI: https://doi.org/10.1002/btpr.2718.
[42]nova Institute, (2018) “Bio-plastics market data 2018 - Global production capacities of bio-plastics 2018-2023” European Bioplastics.
[43]Zargar V, Asgari M, Dashti A, (2015) “A review on chitin and chitosan polymers: structure chemistry, solubility, derivatives and applications” ChemBioeng Rev; 2(3):204-26 DOI: https://doi.org/10.1002/cben.201400025.
[44]WebMD, (2020) “Chitosan - uses, side effects and more” www.webmd.com/vitamins/ai/ingredientmono-625/chitosan.
[45]Inmaculada A, Andres RA, Civera M. C., Arias C., Elorza B., Caballero A. H., Acosta N., (2021) “Chitosan: an overview of its properties and applications” Polymers Basel. 13(19):3256 DOI: https://doi.org/10.3390/polym13193256.
[46]Azzam EMS, Solyman SM, Abd-Elaal AA, (2016) “Fabrication of chitosan/Ag-nanoparticles/clay nano-composites for catalytic control on oxidative polymerization of aniline” Colloid Surfaces A PhysiochemEng Asp; 510:221-30 DOI: https://doi.org/10.1016/j.colsurfa.2016.06.015.
[47]Rinaud M, (2013) “Chitin and chitosan: properties and applications” ProgPolymsci; 31(7):603-32 DOI: https://doi.org/10.1016/j.progpolymsci.2013.06.001.
[48]Van Den Broek LAM, Knoop RJI, Kappen FHJ, Boeriu CG, (2014)“Chitosan films and blends for packaging material” CarbohydrPolym; 116:237-41 DOI: https://doi.org/10.1016/.carbpol.2014.07.039.
[49]Zou P, Yang X, Wang J, Li Y, Yu H, Zhang Y., (2015) “Advances in characterization and biological activities of chitosan and chitosan oligosaccharides” Food Chem; 190(12):1174-81 DOI: https://doi.org/10.1016/j.foodchem.2015.06.076.
[50]Kerch G, (2015) “Chitosan film and coatings prevents losses of fresh fruit nutritional quality: a review” Trends Food SciTechnol; 46(2):159-66 DOI: https://doi.org/10.1016/j.tifs.2015.10.010.
[51]Yen MT, Yang JH, Mau JL, (2018) “Anti-oxidant properties of chitosan from crab shells” CarbohydrPolym; 74(4):840-4 DOI: https://doi.org/10.1016/j.carbpol.2018.05.003.
[52]Kong M, Chen SG, Xing K, Park HJ, (2013) “Anti-microbial properties of chitosan and mode of actions: a state of the art review” Int J Food Microbiol; 144(1):51-63 DOI: https://doi.org/10.1016/j.ijfoodmicro.2010.09.012.
[53]Kadam D, Shah N, Palamthodi S, Lele SS, (2018) “An investigation on the effects of polyphenolic films” CarbohydrPolym; 192:347-55 DOI: https://doi.org/10.1016/j.carbpol.2018.03.052.
[54]Do YS, Kim YM, Il KB, Je JY, (2017) “Preparation and anti-bacterial activities of chitosan-gallic acid/ polyvinyl alcohol blend film by LED-UV irradiation” J PhotochemPhotobiol B Biol; 176:145-9 DOI: https://doi.org/10.1016/j.jphotobiol.2017.09.024.
[55]Dutta PK, Tripathi S, Mehrotra GK, Dutta J, (2019) “Perspectives of chitosan baed anti-microbial films and food applications” Food Chem; 114(4):1173-82 DOI: https://doi.org/10.1016/j.foodchem.2019.11.047.
[56]Siripatrawan U, Vitchayakitti W, (2016) “Improving functional properties of chitosan films as active food packaging by incorporating with propolis” Food Hydrocoll; 61:695-702 DOI: https://doi.org/10.1016/j.foodhyd.2016.06.001.
[57]Aranz I, Harris R, Heras A, (2013) “Chitosan amphiphilic derivatives, chemistry and applications” 14(3) p308-330 DOI: https://doi.org/10.2174/138527210790231919.
[58]Grande CD, Mangadlo J, Fan J, De Leon a, Delgado-Ospina J, Rojas JG, et al (2017) “Chitosan crosslinked grapheme oxide nanocomposite films with antimicrobial activity for application in food industry” MacromolSymp; 374(1):1-8 DOI: https://doi.org/10.1002/masy.201600114.
[59]Islam S, Bhuyan MAR, Islam MN, (2017) “Chitin and chitosan: structure, properties and application in biomedical engineering” J polym Environ; 25(3):854-66 DOI: https://doi.org/10.1007/s10924-016-0865-5.
[60]Lo J, Lange D, Chew BH, (2014) “Urethat stents and Foley cathers-associated urinary tract infections: the role ofcoatings and materials in infection prevention” Antibiotics; 3(1):87-97 DOI: https://doi.org/10.3390/antibiotics3010087.
[61]Thomas D, Thomas S, (2013) “Chemical mosification of chitosan and its biomedical application“. BiopolymBiocompos; p.33-51 DOI: https://doi.org/10.1002/9781118609958.ch3.
[62]Prasitslip M, Jenwithisuk R, Kongsuwan K, Damrongchai N, Watts p, (2013) “Cellular responses to chitosan in vitro: the importance of deacetylation” J Mater Sci Mater Med; 11(12):773-8 DOI: https://doi.org/10.1023/a:1008997311364.
[63]Li H, Hu C, Yu H, Chen C, (2018) “Chitosan composite scaffolds for articular cartilage defect repair: a review” RSC Adv; 8(7):3736-49 DOI: https://doi.org/10.1039/C7RA11593H.
[64]Levengood SKL, Zhang M, (2014) “Chitosan-based scaffolds for bone tissue engineering” J Mater Chem B; 2(21):3161-84 DOI: https://doi.org/10.1039/C4TB00027G.
[65]Abe M. M, Martin's J. R, Sanvezzo P. B, Macedo J. V, Branciforti M. C, Halley P, Botaro V. R, Brienzo M. (2021) 'Advantages and Disadvantages of Bioplastics Production from Starch and Lignocellulosic Components'. Polymers Basel. 2021 Jul 28;13(15):2484. doi: 10.3390/polym13152484.
[66]Gao G, Xu F, Xu J, Liu Z, (2022) "Study of Material Color Influences on Mechanical Characteristics of Fused Deposition Modeling Parts". Materials Basel. 2022 Oct 10;15(19):7039. DOI: 10.3390/ma15197039.
[67]Södergård A, Stolt M (2002). "Properties of lactic acid based polymers and their correlation with composition". Progress in Polymer Science. 27 (6): 1123-1163. doi:10.1016/S0079-6700(02)00012-6.
[68]Amin R, Chowdhurry M. A, Kowser A, (2019) "Characterization and performance analysis of composite bioplastics synthesized using titanium dioxide nanoparticles with corn starch'. Heliyon, Volume 5, Issue 8, e02009, https://doi.org/10.1016/j.heliyon.2019.e02009.
[69]Dong Y, Ruan Y, Wang H, Zhao Y, Bi, D, (2004) 'Studies on glass transition temperature of chitosan with four techniques'. Journal of Applied Polymer Science. 93(4):1553 - 1558. DOI: 10.1002/app.20630).
[70]Carosio F, Colonna S, Fina A, Rydzek G, Hermele J, Jerry L, Schaaf P, Boulmedais F, (2020) 'Efficient Gas and Water Vapor Barrier Properties of Thin Poly(lactic acid) Packaging Films: Functionalization with Moisture Resistant Nafion and Clay Multilayers' Hal Open Science. HAL Id: hal. 02456545. https://hal.science/hal-02456545v1.
[71]Miranda S. P, Garnica O, Sagahon A. V. L, Cardenas G, (2004). 'Water Vapor Permeability and Mechanical Properties of Chitosan Films'. Journal of the Chilean Chemical Society. 49(2):173-178. DOI: 10.4067/S0717-97072004000200013.
[72]Rodriguez, F. et al. (2021). Biodegradation of Agro-Waste-Based Polymers.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Verla Andrew Wirnkor, Ibe Valentine Maduabuchi , Verla Evelyn Ngozi, Olorunfemi Ebenezer Bola, Ejiako Joel Ejikel, Mkposong Stephen Asuquo , Iheoma Ezichi Mbuka-Nwosu (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.